Design a Calculator
Introduction
I want to talk about the design of a calculator, whose operation is radically different from the calculators that most of you have used. The calculator, which we will design, implements a subset of the operations that define the Hewlett Packard 15C. The HP-15C – introduced in 1982 – is a programmable scientific calculator with rich set of scientific functions, storage for up to 67 variables, and 448 programming steps. An emulator for this classic calculator may be found here. To effect the design, we first need to enforce (and fill in a few gaps in) our knowledge.
[image: http://ecx.images-amazon.com/images/I/71R1OHpEqWL._AA1500_.jpg]

Expression Trees
An expression tree is a binary tree in which
· Each leaf contains an operand
· The root and internal nodes are operators
· Subtrees are sub expressions, with the root of each subtree being an operator.
To prevent student overload, I will restrict my discussion to the four basic arithmetic operators (binary) { + , - , * , / }. This in no way limits the design that we will develop.
Example
Suppose you have the following expression
	
The corresponding expression tree is

	
	
	
	
	
	
	
	/
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	*
	
	
	
	
	
	2

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	+
	
	
	
	
	
	-
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	4
	
	3
	
	
	
	5
	
	1
	
	

Inorder Traversal
To see that the expression tree represents the original expression, perform an inorder traversal of the above tree. Insert parenthesis around the traversal of each subtree.
 ((4+3) * (5-1)) / 2)
This expression is readily processed by using the normal order of operations or by an algebraic (“normal”) calculator.
((4+3) * (5-1)) / 2) evaluates to 14
Not surprisingly, this notation is called algebraic notation.
Preorder Traversal
What is the result of performing a preorder traversal on the same expression tree? While it is not obvious now, we will have no need of parenthesis, but I will insert extra spaces for readability.
	/ * + 4 3 - 5 1 2
Of what possible utility is this expression? To evaluate this expression, you need a different set of rules
	Repeat until a single value remains
Scan the expression from left to right until you find a triple of the form operator value value
Evaluate the triple
Replace the triple in the original expression with the value
Evaluation
/ * + 4 3 - 5 1 2
/ * 7 - 5 1 2
/ * 7 4 2
/ 28 2
14
The expression resulting from a preorder traversal is called Polish Notation.
Postorder Traversal
Now, let’s perform a postorder traversal of the same tree. Again it is not obvious, but we will have no need of parenthesis.
4 3 + 5 1 - * 2 /
To evaluate this expression, you need yet a different set of rules
	Repeat until a single value remains
Scan the expression from left to right until you find a triple of the form value value operator
Evaluate the triple
Replace the triple in the original expression with the value

Evaluation
4 3 + 5 1 - * 2 /
7 5 1 - * 2 /
7 4 * 2 /
28 2 /
14
The expression resulting from a postorder traversal is called Reverse Polish Notation (RPN).
We will now design a calculator to process such expressions. But first a diversion to discuss an abstract data type (ADT) that we will need to design and implement the calculator.
A Stack
In a cafeteria, stacks of plates are stored in a spring-loaded container. Only the top plate is accessible. The container supports three operations isEmpty, addAPlate, and takeAPlate.

A stack is a data container that only allows access to the most recently added datum. A stack allows only three operations, a pop, a push, and isEmpty.
· The pop operation return the value of the most recently added datum and removes it from the stack,
· The push operation puts a new value on the stack, covering the previously most recently added value.
· The isEmpty operation returns a true if there are no items on the stack.
Sometimes a fourth operation peek is implemented; peek returns the value of the most recently added datum without removing it from the stack. Note that a peek is only a shortcut, peek = pop + push.

Consider the following depiction of a stack (labeled according to the HP conventions)

	[bookmark: _GoBack]T →
	
	0

	Z →
	
	0

	Y →
	
	0

	X →
	
	0

Now let’s play with our stack

push(2)		
	T →
	
	0

	Z →
	
	0

	Y →
	
	0

	X →
	
	2

push(6)		
	T →
	
	0

	Z →
	
	0

	Y →
	
	2

	X →
	
	6

push(121)
	T →
	
	0

	Z →
	
	2

	Y →
	
	6

	X →
	
	121

a = pop()		
	T →
	
	0

	Z →
	
	0

	Y →
	
	2

	X →
	
	6

Calculator Design
Our calculator will have a keyboard with processor, a stack, and a display.

The specification for our calculator is
· The display will display the current contents of the X position on the stack,
· Pressing keys 0…9 will cause the corresponding digit to be entered into the X position of the stack,
· Pressing the Enter key will terminate the current number entry and push the terminated entry again on the stack.
· If a key 0…9 is depressed immediately after the Enter key, the value in the X position is replace with the digit pressed.
· Pressing one of the operator keys, (/ for example) will pop two values from the stack, divide the last value popped by the first value popped and push the result on the stack.

	T →
	
	0

	Z →
	
	0

	Y →
	
	 (
663
)2

	X →
	
	663

[image:]

Some Examples
To find the sum of 123 and 456, we would press the following keys

1
2
3
Enter
4
5
6
+
To find the quotient of 70/5, we would press the following keys
7
0
Enter
5
/
Process the Expression from the Expression Tree
Now, we are finally ready to process the expression generated by the post-order traversal of the previous expression tree
	4 3 + 5 1 - * 2 /
The keystrokes to process this expression are
4
Enter
3
 +
5
Enter
1
 -
*
2
/

Bob is most definitely our uncle.

image1.jpeg
D |
(15C]

Limited Edition

yx

cos

R/S GSB Xzy

PIR RTN RND

ON STO

INT M

HEWLETT-PACKARD

image2.png

